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which might be constant in many practical problems. c is a
positive constant and c , 1. F is a positive constant whichA finite difference scheme is proposed for solving the initial-

boundary value problem of the Maxwell–Bloch equations. Its nu- measures the number of modes that can oscillate in the reso-
merical solutions preserve some properties of the true solution. nator. The initial data F0(x, y), P0(x, y), D0(x, y) are given.
The numerical experiments are presented. Finally the stability and Without any loss of generality, we assume that
convergence are proved strictly. Q 1996 Academic Press, Inc.

F(x, y, s) ; P(x, y, s) ; D(x, y, s) 5 0, (x, y) [ Q, s . 0,
(4)

1. INTRODUCTION
for a closed resonator with reflecting boundaries.

As we know, the Maxwell–Bloch equations play an im- Some numerical studies for this problem have been per-
portant role in optics, where they describe the evolution formed using both spectral method [6, 7] and finite differ-
of the slowly varying envelope of the electromagnetic field ence method [9]. All of these studies clarified different
in a closed cavity filled with a resonant two-level medium points of the physical dynamics. The finite difference has
[1–3]. Similar equations arise when considering active opti- some advantages related to its simple implementation, its
cal fibers in a very general context [4]. flexibility to implement different boundary conditions, the

Let Q be the square h(x, y) u 0 , x, y , 1j, with the consideration of imperfection effects, etc. One of the
boundary Q. The complex functions F and P will describe mayor drawbacks of the numerical studies made up to now
the complex electric field and matter polarization, respec- is that, none of these schemes have been constructed over
tively. The real-valued function D is related to the popula- a rigorous mathematical analysis of the numerical scheme
tion inversion. Let i be the imaginary unit and z* the properties and sometimes dubious results have arisen.
conjugate value of z; D is the Laplacian and s is a rescaled This paper deals with a finite difference scheme. Since
time. Then the Maxwell–Bloch equations for the trasverse we approximate the nonlinear terms suitably, its solution
dynamics of a single longitudinal mode laser in the mean possesses some properties which are reasonable analogies
field approximation [2, 5] are of those in the continuous model. Thus it provides good

numerical results. We also analyze the stability of this
scheme. Usually nonlinear problems are not stable in theF

s
2

i
4F

DF 1 s(F 2 P) 5 0, (x, y) [ Q, s . 0 sense of Courant and Lax (see [10]). But they might be
stable in the generalized sense given by Ben-Yu Guo (see(1)
[11–13]). As we approximate the nonlinear terms suitably
in this paper the scheme possesses the best stability; i.e., theP

s
1 (1 1 id)P 2 FD 5 0, (x, y) [ Q, s . 0

index of generalized stability is minus infinity. Accordingly,
the global convergence follows. The main idea and tech-(2)
niques used in the theoretical analysis of this paper are
also applicable to other nonlinear problems occurring inD

s
1 c FD 2 r 1

1
2

(F*P 1 FP*)G5 0, (x y) [ Q, s . 0.
the wide area of nonlinear optics.

(3)
2. THE PROPERTIES OF THE MAXWELL–BLOCH

EQUATIONS
The meaning of the parameters is the usual [5]. The nonneg-
ative function r(x, y, s) is a rescaled pumping. The constant We first analyze some properties of the solutions of the

Maxwell–Bloch equations. Let z 5 zr 1 izi, zr and zi beingd is the scaled detuning. s(x, y) is a measure of the losses
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the real and imaginary parts of z, respectively. We can In the same way, we deduce from (7) and (8) that
rewrite (1) as

1
2



s
iP(s)i2 1 iP(s)i2 2 (D(s), Fr(s)Pr(s)

(14)Fr

s
1

1
4F

DFi 1 s(Fr 2 Pr) 5 0, (5) 1 Fi(s)Pi(s)) 5 0.

Similarly, we get from (9) thatFi

s
2

1
4F

DFr 1 s(Fi 2 Pi) 5 0. (6)

1
2



s
iD(s)i2 1 ciD(s)i2 2 c(r(s), D(s))

(15)Similarly, (2) stands for
1 c(D(s), Fr(s)Pr(s) 1 Fi(s)Pi(s)) 5 0.

Pr

s
1 Pr 2 dPi 2 FrD 5 0, (7) We multiply (14) by c and put the resulting equation to-

gether with (13) and (15). Then
Pi

s
1 Pi 1 dPr 2 FiD 5 0. (8)

E(s)
s

1 2iÏsF(s)i2 1 2ciP(s)i2

(16)
1 2ciD(s)i2 5 2G(s) 1 2c (r(s), D(s)),Also, (3) leads to

whereD
s

1 c[D 2 r 1 FrPr 1 FiPi] 5 0. (9)
E(s) 5 iF(s)i2 1 ciP(s)i2 1 iD(s)i2,

G(s) 5 (s, Fr(s)Pr(s) 1 Fi(s)Pi(s)).Let (z1, z2) and izi be the inner product and the norm
in L2(Q),

Thus the solutions of (1)–(4) satisfy the equality

(z1, z2) 5 E E
Q

z1z*2 dxdy, izi 5 Ï(z, z).
E(s) 1 2 ES

0
(iÏsF(s9)i2 1 ciP(s9)i2 1 ciD(s9)i2) ds9

(17)
We take the inner product of (5) with Fr to obtain that 5 E(0) 1 2 ES

0
[G(s9) 1 c(r(s9), D(s9))] ds9.

Remark 1. Obviously for any 0 , a , 1,1
2



s
iFr(s)i2 1

1
4F

(DFi(s), Fr(s)) 1 iÏs Fr(s)i2

(10)
2 (s, Fr(s)Pr(s)) 5 0.

uG(s)u # aiÏusuF(s)i2 1
1

4a
iÏusuP(s)i2. (18)

Similarly, (6) leads to
If s(x, y) # s1 , 4c, for all (x, y) [ Q, then we take a 5
s1/4c 1 «, « being suitably small positive constant. Thus1

2


s
iFi(s)i2 2

1
4F

(DFi(s), Fr(s)) 1 iÏsFi(s)i2

(11)
2 (s, Fi(s)Pi(s)) 5 0.

0 , b1 5 min S1 2
s1

4c
2 «, 1 2

s1

s1 1 4«cD, 1. (19)

By boundary condition (4) and Green’s formula,
If in addition, s(x, y) $ s0 $ 0 and r(x, y, s) ; 0, then
(16) reads

(DFi(s), Fr(s)) 5 (DFr(s), Fi(s)). (12)

E(s)
s

1 2bE(s) # 0, (20)Putting (10) and (11) together, we obtain

with1
2



s
iF(s)i2 1 iÏsF(s)i2 2 (s, Fr(s)Pr(s)

(13)
1 Fi(s)Pi(s)) 5 0. b 5 min(s0b1, b1, c).
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Clearly in this case E(s) # E(0)e2bs, and so E(s) # E(0). zs̄(x, y, s) 5 zs(x, y, s 2 t),
In particular if s0 . 0, then E(s) R 0 as s R y. Physically
r(x, y, s) ; 0 means the absence of pumping. If also 0 zŝ(x, y, s) 5

1
2

(zs(x, y, s) 1 zs̄(x, y, s)).
, s0 # s1 , 4c, then the system decays as s tends to
the infinity.

It is shown in [12] that

3. THE FINITE DIFFERENCE SCHEME (zs(s), z(s 1 t) 1 z(s))h

We now consider the finite difference scheme for solving 5
1
t

(iz(s 1 t)i2
h 2 iz(s)i2

h) 5 (iz(s)i2
h)s, (22)

(1)–(4). Let h 5 1/N be the mesh size in the space, N being
any positive integer. The discrete domain Qh is defined by 2(zŝ(s), ẑ(s))h

Qh 5 h(x, y) 5 (mh, nh) u 1 # m, n # N 2 1j 5
1
2t

(iz(s 1 t)i2
h 2 iz(s 2 t)i2

h) 5 (iz(s)i2
h) ŝ. (23)

with the discrete boundary Qh. We introduce the discrete We begin to construct the scheme. It is commonly admitted
inner product and norm as that a reasonable discretization of a partial differential

equation should preserve some properties of its genuine
solution; e.g., see [11]–[14]. We shall propose a finite differ-(z1, z2)h 5 O

(x,y)[Qh

z1(x, y) z*2 (x, y), izih 5 (z, z)1/2
h .

ence scheme, the solutions of which have the properties
simulating (17). Let f, p, and d be the approximations to
F, P, and D, respectively. Then the scheme isWe shall use the following notations:

fŝ(x, y, s) 2
i

4F
Dh f̂ (x, y, s) 1 s(x, y) ( f̂ (x, y, s)zx(x, y) 5

z(x 1 h, y) 2 z(x, y)
h

,

2 p̂(x, y, s)) 5 0, (x, y) [ Qh, s [ Ṙt, (24)
zy(x, y) 5

z(x, y 1 h) 2 z(x, y)
h

,
pŝ(x, y, s) 1 (1 1 id) p̂(x, y, s) 2 f (x, y, s) d̂(x, y, s) 5 0,

(x, y) [ Qh, s [ Ṙt, (25)zx̄(x, y) 5 zx(x 2 h, y),

dŝ(x, y, s) 1 cd̂(x, y, s) 2 cr(x, y, s) 1 c fr(x, y, s) p̂r(x, y, s)zȳ(x, y) 5 zy(x, y 2 h),

1 c fi(x, y, s) p̂i(x, y, s) 5 0, (x, y) [ Qh, s [ Ṙt (26)Dhz(x, y) 5 zxx̄(x, y) 1 zyȳ(x, y).

The values of f (x, y, t), p(x, y, t), and d(x, y, t) are
It is shown in [12] that for any real-valued functions u and

evaluated by the corresponding Crank–Nicholson-typev with homogeneuous boundary conditions, we have
scheme, i.e.,

(Dhu, v)h 5 (Dhv, u)h. (21)
fs(x, y, 0) 2

i
4F

Dh f̄Sx, y,
t

2D
Furthermore, let t be the mesh size in time s and

1 s(x, y) S f̄Sx, y,
t

2D2 p̄Sx, y,
t

2DD5 0, (27)
Ṙt 5 hs 5 kt, k 5 1, 2, 3, ...j, Rt 5 Ṙt < h0j.

We also introduce the following notations: ps(x, y, 0) 1 (1 1 id) p̄Sx, y,
t

2D2 f (x, y, 0) dSx, y,
t

2D5 0,

(28)
ẑ(x, y, s) 5

1
2

(z(x, y, s 1 t) 1 z(x, y, s 2 t)),

ds(x, y, 0) 1 cdSx, y,
t

2D2 cr̄Sx, y,
t

2D
z̄Sx, y, s 1

t

2D5
1
2

(z(x, y, s 1 t) 1 z(x, y, s)),

1 c fr(x, y, 0) p̄rSx, y,
t

2D1 cfi(x, y, 0) p̄iSx, y,
t

2D5 0.
zs(x, y, s) 5

1
t

(z(x, y, s 1 t) 2 z(x, y, s)),
(29)
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The initial values f0 5 F0, p0 5 P0, d0 5 D0. Besides f, p, where
and d vanish on Qh.

Eh(s) 5 i f̂ (s)i2
h 1 ci p̂(s)i2

h 1 id̂(s)i2
h,

Remark 2. The formula (26) is equivalent to
Gh(s) 5 (s, f̂r(s) p̂r(s) 1 f̂i(s) p̂i(s))h.

dŝ(x, y, s) 1 cd̂(x, y, s) 2 cr(x, y, s)
By summing (35) over all s9 # s we obtain

1
c
2

f *(x, y, s) p̂(x, y, s) 1
c
2

f (x, y, s) p̂*(x, y, s) 5 0.
Eh(s 1 t) 1 Eh(s)

It is easy to solve (24)–(29). If the values at time s 2 t 1 4t Os

s95t

(iÏs f̂ (s9)i2
h 1 ci p̂(s9)i2

h 1 cid̂(s9)i2
h)

are known, then we evaluate p(x, y, s) and d(x, y, s) by
(25) and (26) explicitly. Then we calculate f (x, y, s) by

5 Eh(t) 1 Eh(0) 1 4t Os

s95t

(Gh(s9) 1 c(r(s9), d(s9))h).solving a linear system (24). The fact that the scheme is
linearly implicit allows the use of fast linear equation

(36)solvers as will be discussed later and saves a lot of work.

Clearly the above equality is a reasonable analogy of (17).Let us check the properties of the proposed scheme. We
Thus this scheme could provide reasonable numerical sim-can rewrite (24) as
ulations.

Remark 3. We can evaluate Eh(t) by (27)–(28) simi-fr,ŝ(x, y, s) 1
1

4F
Dh f̂i(x, y, s)

larly. In particular, if r(x, y, s) ; 0 and 0 , s0 # s1 # 4c,
then Eh(s) R 0 as s R y. Therefore, in this case, the

1 s(x, y) ( f̂r(x, y, s) 2 p̂r(x, y, s)) 5 0, (30)
discrete model also decays as the continuous model.

Remark 4. We can calculate p(x, y, s) more precisely.fi,ŝ(x, y, s) 2
1

4F
Dh f̂r(x, y, s)

It means that, instead of (28) and (29), we use the approxi-
mation1 s(x, y) ( f̂i(x, y, s) 2 p̂i(x, y, s)) 5 0, (31)

We take the discrete inner product of (30) with 2f̂r(x, y, ps(x, y, 0) 1 (1 1 id) p̄ Sx, y,
t

2Ds) and the discrete inner product of (31) with 2f̂i(x, y, s).
By putting the two resulting equalities together, we obtain
from (21) and (23) that 2 f̄ Sx, y,

t

2D d̄ Sx, y
t

2D5 0, (37)

(i f (s)i2
h) ŝ 1 2iÏs f̂ (s)i2

h 2 2(s, f̂r(s) p̂r(s) 1 f̂i(s) p̂i(s))h 5 0.
ds(x, y, 0) 1 cd̄ Sx, y,

t

2D2 cr̄ Sx, y,
t

2D(32)

In the same way, we get from (25) and (26) that 1 c f̄r Sx, y,
t

2D p̄r Sx, y,
t

2D
(ip(s)i2

h) ŝ 1 2i p̂(s)i2
h

1 c f̄i Sx, y,
t

2D p̄i Sx, y,
t

2D5 0. (38)
2 2(d̂(s), fr(s) p̂r(s) 1 fi(s) p̂i(s))h 5 0, (33)

(id(s)i2
h) ŝ 1 2cid̂(s)i2

h 2 2c(r(s), d̂(s))h It can be verified that there exist the unique solutions f (x,
y, t), p(x, y, t), and d(x, y, t) for all sufficiently small h

1 2c(d̂(s), fr(s) p̂r(s) 1 fi(s) p̂i(s))h 5 0. (34)
and t. But we will find out in Section 7 that the scheme
(24)–(29) possesses the same convergence rate as the

We multiply (33) by the constant c and put the result scheme defined by (24)–(27) and (37)–(38).
together with (32) and (34). Then we find that

4. COMPUTATIONAL IMPLEMENTATION

(Eh(s)) ŝ 1 2iÏs f̂ (s)i2
h 1 2ci p̂(s)i2

h
The linear system arising from the discretization has

1 2cid̂(s)i2
h 5 2Gh(s) 1 2c(r(s), d̂(s))h, (35) been solved using a multigrid technique. Multigrid iterative
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methods reach the solution after a fixed number of itera-
tions; i.e., their convergence rate is independent of the
number of equations N. In fact, they reach the solution
of the linear system with an optimal complexity: O(N)
operations for an N-equation problem. Additionally they
have very good parallel properties. To implement the
multigrid method it is necessary to find several parameters
of the algorithm. In our case, as we are working with
complex functions, it is more difficult to find the adequate
parameters to get the optimal complexity.

The main idea in all multigrid methods is that relaxation
methods are very effective at reducing the high frequency
components of the error, but it is not so with the low
frequency ones (‘‘smooth’’ methods). However, these low FIG. 1. Stationary TEM00 structure obtained for parameter values

r 5 15, d 5 3.65, c 5 0.1, F 5 4, and s 5 0.1; integration parametersfrequency modes have higher frequency on a coarser grid
t 5 0.05, N 5 64 3 64.and can be effectively reduced using a ‘‘smooth’’ method

over that grid. This can be done in a recursive way until
a certain level, where the system will be easier to solve 5. NUMERICAL RESULTS
than the original one. The Jacobi method was used to solve
the system on the coarser grid (Ni 3 Ni). The lack of exact results of the Maxwell–Bloch equa-

tions makes it difficult to check the numerical scheme be-The MVJ algorithm (defined recursively by Algorithm
1) is a V-cycle basic iteration [15]. We start with an initial havior when it is applied to interesting physical problems.

There are, however, some properties which are expectedsolution vh and the solution is reached after a fixed number
of MVJ cycles. Smoothing, restriction (I2h

h ), and prolonga- to be kept by the solutions and some regimes where some
theoretical predictions can be done [18]. These predictionstion (Ih

2h) operators were chosen to keep good convergence
rates and to get good parallel properties. This algorithm allow us to specify what the stationary solution will be for

low Fresnel numbers and single longitudinal mode lasers.has been successfully used, as an internal solver with a
self-adaptative method, to solve the nonlinear Schrodinger Let us perform some numerical simulations. In the fig-

ures to be presented we show the laser intensity profile atequation [16].
a given time: I(x, y) 5 uF(x, y, s)u2. Starting with r 5 15,ALGORITHM 1. vh r MVJh(vh, f h).
d 5 3.65, c 5 0.1, F 5 4, and s 5 0.1 we obtain a stationary
TEM00 structure at s 5 800 computed with t 5 0.05 and1. If Vh is the grid with a Ni 3 Ni grid, solve the linear
a spatial grid of 64 3 64 points (Fig. 1) which also agreessystem using Jacobi and return.
with the prediction of the theoretical model studied in [18]2. Relax (smooth method) n1 times Ahuh 5 f h with
and the results obtained with the finite difference schemeinitial guess vh

studied in [9].3. f 2h r I2h
h ( f h 2 Ahvh), v2h r 0, v2h r MVJ2h(v2h, f 2h)

On the other hand when the physical parameters are set4. Correct vh r vh 1 Ih
2hv2h

to r 5 60, d 5 7.61, F 5 4, s 5 0.1, c 5 0.1, which5. Relax (smooth method) n2 times on Ahuh 5 f h with
physically correspond to a multimode competition stateinitial guess vh.
(leading finally to an asymmetric structure), we again suc-

If we define the problem on grids of various sizes, we ceed in obtaining the right stationary solution, which has
can obtain the solution at each level, from the coarser radial symmetry and zero at a given radial distance. But
grid to the finer ones, with n0 MVJ cycles using as a first this time the time step needs to be reduced to t 5 0.0005
approximation the interpolated one from coarser grids. (Fig. 2). Use of a larger step, t 5 0.005, leads to a splitting
This is the full multigrid algorithm (Algorithm 2). With of the numerical solution which is a typical problem of
this approach, the solution at each level converges up to three level finite difference schemes.
the level of truncation [17]. Other successful simulations have been performed with

parameter values r 5 12.4, c 5 0.1, s 5 0.1, d 5 3.65,ALGORITHM 2. vh r FMVJh(vh, f h).
F 5 4, which lead to a multimode oscillation regime of
the laser (Fig. 3a for s 5 3, b for s 5 7, and c for s 5 14)1. If Vh is the grid with a Ni 3 Ni grid, solve the linear

system using Jacobi vh r (Ah)21 f h and return. and r 5 3, c 5 0.1, s 5 0.1, d 5 3.67, F 5 4, which gives
an asymmetric structure in the asymptotic time region (Fig.2. v2h r FMVJ(v2h, f 2h)

3. Correct vh r vh 1 I2h
h v2h 4). These computations have been performed using a time

step of t 5 0.005 and spatial grids of 64 3 64 points.4. vh r MVJ(vh, f h), n0 times.
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FIG. 2. Asymptotic profile for parameter values r 5 60, d 5 7.61,
F 5 4, s 5 0.1, c 5 0.1; integration parameters t 5 0.005, N 5 64 3 64. FIG. 4. Stationary profile found for r 5 3, c 5 0.1, s 5 0.1, d 5 3.67,

F 5 4.

found. In our case we have performed the numerical simu-Additionally we have checked the effect of a dark spot
on the laser profile, which is modelled by a region of high lation with parameter values d 5 20.1, s 5 4.0, c 5 1.0,

r 5 8, F 5 8, t 5 0.0005 and the numerical result shownlosses placed asymmetrically. This phenomenon has been
studied experimentally by Tamm [19] and the selection of in Fig. 5 closely resembles the experimental result obtained

by Tamm and other previous numerical results [9].an asymmetric stationary structure with two peaks was

FIG. 3. Spatial profile of the laser intensity for parameter values r 5 12.4, c 5 0.1, s 5 0.1, d 5 3.65, F 5 4 computed with t 5 0.005. Three
different times are presented (a) s 5 3.0, (b) s 5 7.0, (c) s 5 14.0.
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d̃ŝ(x, y, s) 1 cd̂̃(x, y, s) 1 c( fr(x, y, s) 1 f̃r(x, y, s)) p̂̃r(x, y, s)

1 c( fi(x, y, s) 1 f̃i(x, y, s)) p̂̃i(x, y, s)

5 g̃2(x, y, s) 1 g̃4(x, y, s), (41)

where

g̃3(x, y, s) 5 f̃ (x, y, s) d̂(x, y, s), (42)

g̃4(x, y, s) 5 2c f̃r(x, y, s) p̂r(x, y, s) 2 c f̃i(x, y, s) p̂i(x, y, s).
(43)

FIG. 5. Stationary profile found when the effect of an imperfection
is considered. Parameter values d 5 20.1, s 5 4.0, c 5 1.0, r 5 8, F 5 Also by (27)–(29),
8; simulation values t 5 0.0005, N 5 64 3 64.

These simulations have been performed with 64 3 64 f̃s(x, y, 0) 2
i

4F
D f̃̄ Sx, y,

t

2D1 s(x, y) f̃̄ Sx, y,
t

2Dspatial grids, but in most cases the scheme works fine with
spatial grids of 32 3 32. This means that the scheme is
spatially very robust even though the order of spatial con- 2 s(x, y) p̄̃ Sx, y,

t

2D5 q̃0(x, y), (44)
vergence is not very high, as will be shown later.

To summarize the scheme’s practical behavior we must
say that the linear character of the finite difference scheme p̃s(x, y, 0) 1 (1 1 id) p̄̃ Sx, y,

t

2Dmakes it very fast to solve using multigrid techniques and
paralellization. These are great advantages when real mas-
sive simulations are performed or computation intensive 2 ( f0(x, y) 1 f̃0(x, y)) d̄̃ Sx, y,

t

2Dparameter regions such as turbulent ones are to be studied.
In this sense this finite difference scheme outperforms the

5 g̃1(x, y) 1 g̃3(x, y), (45)
spectral schemes because of its parallelization properties
and the easiness for the introduction of imperfection, gain
or loss asymmetries, etc. The behavior of the scheme is d̃s(x, y, 0) 1 cd̄̃ Sx, y,

t

2D1 c( f0r(x, y)
right and it converges to the correct solution when the
spatial and temporal steps are reasonable.

1 f̃0r(x, y)) p̄̃r Sx, y,
t

2D1 c( f0i(x, y)
6. STABILITY ANALYSIS

1 f̃0i(x, y)) p̄̃i Sx, y,
t

2DAs pointed out in [12], nonlinear finite difference
schemes are not stable in the sense of Courant and Lax
usually. But they might be stable in the sense of generalized 5 q̃2(x, y) 1 q̃4(x, y), (46)
stability. Now assume that the initial values f0, p0, and d0

have the errors f̃0, p̃0, and d̃0. The right sides of (24)–(29)
wherehave the errors g̃0, g̃1, g̃2, q̃0, q̃1, q̃2. Then the corresponding

solutions f, p, and d become f 1 f̃, p 1 p̃, and d 1 d̃. By
(24)–(26), we know that for s [ Ṙt, the errors satisfy
the equations q̃3(x, y) 5 f̃0(x, y) d̄ Sx, y,

t

2D,

f̃ŝ(x, y, s) 2
i

4F
D f̃̂ (x, y, s) 1 s(x, y) f̃̂ Sx, y,

t

2D q̃4(x, y) 5 2c f̃0r(x, y) p̄r Sx, y,
t

2D2 c f̃0i(x, y) p̄i Sx, y,
t

2D.

2 s(x, y) p̂̃(x, y, s) 5 g̃0(x, y, s), (39)

Besides f̃, p̃, and d̃ vanish on Qh.p̃ŝ(x, y, s) 1 (1 1 id) p̂̃(x, y s) 2 ( f (x, y, s)
By comparing (39)–(41) to (24)–(26) and an argument

1 f̃ (x, y, s)) d̂̃(x, y s) 5 g̃1(x, y, s) 1 g̃3(x, y, s), (40) similar to the derivation of (35), we conclude that
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(Ẽh(s)) ŝ 1 2iÏs f̃̂ (s)i2
h 1 2ci p̂̃(s)i2

h 1 2cid̂̃(s)i2
h where b2 5 2b1 1 4c(d 2

1 1 p 2
1) and

5 2 O3
j51

G( j)
h (s), (47)

r 0
h(s) 5 Ẽh(0) 1 Ẽh(t) 1 (1 1 b1t)i f̃0i2

h 1 t Os2t

s95t

G̃h(s9).

where
Let t be suitably small such that 1 2 b1t .

1
2

. Then

Ẽh(s) 5 i f̃ (s)i2
h 1 ci p̃(s)i2

h 1 id̃(s)i2
h,

G̃(1)
h (s) 5 (s, f̃̂r(s) p̂̃r(s) 1 f̃̂i(s) p̂̃i(s))h, Ẽh(s) # 2r 0

h(s) 1 2b2t Os2t

s95t

i f̃ (s9)i2
h. (49)

G̃(2)
h (s) 5 (g̃0r(s), f̃̂r(s))h 1 (g̃0i(s), f̃̂i(s))h

1 c(g̃1r(s), p̂̃r(s))h 1 c(g̃1i(s), p̂̃i(s))h Next, by (21)–(22) and an argument similar to the deriva-
tion of (48), we deduce from (44)–(46) that1 (g̃2r(s), d̂̃(s))h,

G̃(3)
h (s) 5 c( f̃r(s) p̂̃r(s) 1 f̃i(s) p̂̃i(s), d̂(s))h Ẽh(t) # b3Ẽh(0) 1 b4(iq̃0i2

h 1 iq̃1i2
h 1 iq̃2i2

h), (50)

2 c( f̃r(s) p̂r(s) 1 f̃i(s) p̂i(s), d̂̃(s))h.
b3 and b4 being positive constants depending only on c,
s 1, d1, and p1. Finally, we use the discrete Gronwall equal-Let s1 . 0 and up(x, y, s)u # p1, ud(x, y, s)u # d1 for all
ity (see [12]) to conclude that(x, y) [ Qh and s # s1 1 t. It can be shown that

THEOREM 1. Let t be suitably small. Then for any s1 .
0, all s # s 1, and rh(s)

uG̃(1)
h (s)u #

s2
1

2c
i f̃̂ (s)i2

h 1
c
2

i p̂̃(s)i2
h,

Ẽh(s) # b5 rh(s)eb6s. (51)
uG̃(2)

h (s)u # i f̃̂ (s)i2
h 1

c
4

i p̂̃(s)i2
h 1

c
2

id̂̃(s)i2
h 1

1
2

G̃h(s),
Remark 5. Theorem 1 shows the stability of scheme

(24)–(29). Since b1 and b2 depend on p1 and d1, this stabil-uG̃(3)
h (s)u # c(d2

1 1 p2
1) i f̃(s)i2

h 1
c
4

i p̂̃(s)i2
h 1

c
2

id̂̃(s)i2
h,

ity is different from the stability in the sense of Courant
and Lax. But there is no restriction on the data error rh(s).
So this scheme possesses the generalized stability with thewhere
minus infinity index (see [12]). It is the best result for
generalized stability.

G̃h(s) 5
1
2

i g̃0(s)i2
h 1 2ci g̃1(s)i2

h 1
1
c

i g̃2(s)i2
h. Remark 6. Since we approximate the Maxwell–Bloch

laser equations suitably, the effect of the main nonlinear
error terms (such as f̃r(x, y, s) p̂̃(x, y, s), etc.) are cancelled.

By substituting the above estimates into (47), it follows that Thus we get the best result.

7. THE CONVERGENCE(Ẽh(s9)) ŝ # Ss2
1

c
1 2s 1 1 2D i f̃̂ (s9)i2

h

(48) In this section, we deal with the convergence. Let g̃0, g̃1,
g̃2, q̃0, q̃1, q̃2 denote the approximation errors of (24)–(29),1 2c(d2

1 1 p2
1) i f̃ (s9)i2

h 1
1
4

G̃h(s9).
respectively. Then for s # s1, g̃0, g̃1, g̃2, q̃0 are of order
O(t 2 1 h2), provided that F, P, D [ C 2(0, s; C 4(Q)), g̃,
q̃ [ C2(0, s; C0(Q)). While q̃1, q̃2 are of order O(t 1 h2).Let b1 5 s 2

1/c 1 2s 1 1 2 and notice that i f̃̂ (s)i2
h #

Let F̃ 5 f 2 F, P̃ 5 p 2 P, D̃ 5 d 2 D. Then by (1)–(3)1
2

i f̃ (s 1 t)i2
h 1

1
2

i f̃ (s 2 t)i2
h. By summing up (48) over all and (24)–(29) the errors satisfy the equations similar to

(39)–(46). But f̃, p̃, and d̃ are replaced by F̃, P̃, and D̃,s9 such that t # s9 # s 2 t, we get
respectively. On the other hand, g̃0, g̃1, g̃2, q̃0, q̃1, and q̃2

are replaced by 2g̃0, 2g̃1, 2g̃2, 2q̃0, 2q̃1, and 2q̃2. Besides
F̃ ; P̃ ; D̃ 5 0 at s 5 0. We also get a similar error(1 2 b1t) (Ẽh(s) 1 Ẽh(s 2 t)) # r0

h(s) 1 b2t Os2t

s95t

i f̃ (s9)i2
h,

estimation, but Ẽh(s) and rh(s) are given by
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Ẽh(s) 5 iF̃(s)i2
h 1 ciP̃(s)i2

h 1 iD̃(s)i2
h, that this scheme will be useful when addressing the simula-

tion of very disordered states recently found in real lasers
[20] which can be properly called turbulent.rh(s) 5 t Os2t

s95t

(i g̃0(s9)i2
h 1 i g̃1(s9)i2

h 1 i g̃2(s9)i2
h) 1 t O2

j50
iq̃ji2

h.
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